Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Virol ; 97(2): e0161122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2246230

RESUMEN

Identification of bona fide functional receptors and elucidation of the mechanism of receptor-mediated virus entry are important to reveal targets for developing therapeutics against rabies virus (RABV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our previous studies suggest that metabotropic glutamate receptor subtype 2 (mGluR2) functions as an entry receptor for RABV in vitro, and is an important internalization factor for SARS-CoV-2 in vitro and in vivo. Here, we demonstrate that mGluR2 facilitates RABV internalization in vitro and infection in vivo. We found that transferrin receptor 1 (TfR1) interacts with mGluR2 and internalizes with mGluR2 and RABV in the same clathrin-coated pit. Knockdown of TfR1 blocks agonist-triggered internalization of mGluR2. Importantly, TfR1 also interacts with the SARS-CoV-2 spike protein and is important for SARS-CoV-2 internalization. Our findings identify a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry, and reveal TfR1 as a potential target for therapeutics against RABV and SARS-CoV-2. IMPORTANCE We previously found that metabotropic glutamate receptor subtype 2 (mGluR2) is an entry receptor for RABV in vitro, and an important internalization factor for SARS-CoV-2 in vitro and in vivo. However, whether mGluR2 is required for RABV infection in vivo was unknown. In addition, how mGluR2 mediates the internalization of RABV and SARS-CoV-2 needed to be resolved. Here, we found that mGluR2 gene knockout mice survived a lethal challenge with RABV. To our knowledge, mGluR2 is the first host factor to be definitively shown to play an important role in RABV street virus infection in vivo. We further found that transferrin receptor protein 1 (TfR1) directly interacts and cooperates with mGluR2 to regulate the endocytosis of RABV and SARS-CoV-2. Our study identifies a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry and opens a new door for the development of therapeutics against RABV and SARS-CoV-2.


Asunto(s)
COVID-19 , Virus de la Rabia , Receptores de Glutamato Metabotrópico , Receptores de Transferrina , SARS-CoV-2 , Internalización del Virus , Animales , Humanos , Ratones , Rabia/metabolismo , Virus de la Rabia/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Transferrina/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Cell Metab ; 33(8): 1565-1576.e5, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1343160

RESUMEN

Emerging evidence points toward an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While preexisting diabetes is associated with severe COVID-19, it is unclear whether COVID-19 severity is a cause or consequence of diabetes. To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic ß cells can be infected by SARS-CoV-2 and cause ß cell depletion. We found that the SARS-CoV-2 receptor, ACE2, and related entry factors (TMPRSS2, NRP1, and TRFC) are expressed in ß cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic ß cells in patients who succumbed to COVID-19 and selectively infects human islet ß cells in vitro. We demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces ß cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic ß cell signaling, similar to that observed in type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce ß cell killing.


Asunto(s)
COVID-19/virología , Diabetes Mellitus/virología , Células Secretoras de Insulina/virología , Neuropilina-1/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2/patogenicidad , Internalización del Virus , Células A549 , Adulto , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2/metabolismo , Antígenos CD/metabolismo , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , COVID-19/complicaciones , COVID-19/diagnóstico , Estudios de Casos y Controles , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Femenino , Interacciones Huésped-Patógeno , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Persona de Mediana Edad , Receptores de Transferrina/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
Clin Nutr ; 40(5): 3462-3469, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-967936

RESUMEN

BACKGROUND & AIMS: Iron is an essential trace element to almost all organism, and the delicate balance between host defend system and viral proliferation plays an important role in infective conditions. While the association of the iron metabolism with the prognosis of COVID-19 remains poorly understood. We aimed to estimate the associations of systemic iron metabolism parameters with the severity and risks of adverse outcomes in COVID-19. METHODS: In this retrospective cohort study, we included 158 confirmed COVID-19 patients in Tongji Hospital, Wuhan, China (27 January to 5 April, 2020). Demographic data, comorbidities, laboratory examinations, treatments, and clinical outcomes were all collected. Multivariable Poisson regression was used to estimate the association of iron parameter levels with the severity and risks of adverse outcomes in COVID-19 patients. RESULTS: We identified 60 (38%) severe cases in 158 COVID-19 patients. The median age was 63 years (interquartile range [IQR]: 54-73) and the median length of hospital stay was 28 days (IQR: 17-40). After adjusting for age, sex, IL-6, and pre-existing comorbidities, all iron parameters were associated with the severity of COVID-19 with adjusted risk ratio of 0.42 [95% CI: 0.22-0.83], 4.38 [95% CI: 1.86-10.33], 0.19 [95% CI: 0.08-0.48], and 0.25 [95% CI: 0.10-0.58] for serum iron, ferritin, transferrin, and total iron-binding capacity, respectively. These iron indices were also related to the risk of ARDS, coagulopathy, acute cardiac injury, acute liver injury, and acute kidney injury in COVID-19 patients and high cytokine concentrations. CONCLUSIONS: Patients with low serum iron status likely suffered from severe condition and multiple-organ injury in COVID-19. The iron metabolism parameters might be risk factors and clinical biomarkers for COVID-19 prognosis.


Asunto(s)
COVID-19/sangre , Ferritinas/metabolismo , Hierro/metabolismo , Índice de Severidad de la Enfermedad , Transferrina/metabolismo , Anciano , COVID-19/epidemiología , COVID-19/fisiopatología , China/epidemiología , Estudios de Cohortes , Citocinas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptores de Transferrina/metabolismo , Estudios Retrospectivos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA